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Generalization of Maeda's Theorem 
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Received May 19, 1986 

The theorem of S. Maeda concerning the characterization of finite measures on 
a quantum logic of all closed subspaces of a Hilbert space of dimension #2 is 
generalized to the case of o'-finite measures with possible infinite values. The 
proof does not involve Gleason's result, but only the proposition on frame 
functions. 

1. I N T R O D U C T I O N  AND P R E L I M I N A R I E S  

Let Af(H)  be a quan tum logic o f  all closed subspaces o f  a (not 
necessarily separable) Hilbert  space H over the field C of  real or complex 
numbers.  A measure on ~ ( H )  is a funct ion m : ~ ( H ) - >  [0, ~ ]  such that 
(1) m ( 0 ) = 0 ;  (2) m is ~r-additive on all sequences of  mutual ly  or thogonal  
elements o f  oT(H). Gleason ' s  theorem (Gleason 1957) says that any finite 
measure m on a separable Hilbert space H, dim H # 2, is in one- to-one 
cor respondence  with positive Hermit ian operators  T on H of  finite trace via 

r e ( M )  = t r (TM) ,  M c ~ ( H )  (1) 

(we identify a subspace M with its or thoprojec tor  pM on it). Eilers and 
Horst  (1975) and Drisch (1979) prove that  the assumpt ion of  separability 
is superfluous when the Hilbert  space is o f  d imension of  nonmeasurable  
cardinali ty (for definition see below);  consequently,  any finite measure is 
already totally additive. Maeda  (1980) (see also Kalmbach,  1983, p. 273) 
has given the characterizat ion o f  all finite measures on a quan tum logic 
~ ( H ) ,  dim H # 2, showing that  the fol lowing condit ions are equivalent: 
(1) m is representable th rough  a positive Hermit ian opera tor  T of  finite 
trace via (1); (2) m has a support ,  i.e., there is an element M ~ ~ f (H)  such 
that  r e ( N ) = 0  iff N •  (3) m is totally additive on or thogonal  elements 
of  ~ ( H ) .  In  proving that  (3) implies (1), Maeda  follows the p roo f  in 
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Gleason 's  paper,  but  he does not  use the Gleason result. It is relatively 
easily verified that ( i )  implies (2), and (2) implies (3). 

The situation with measures attaining infinite values is more  compli-  
cated. These measures may appear  in some descriptions o f  physical  systems; 
for example,  the d imension function is such a measure. 

To formulate  our  results, we need the following notions. By T r ( H )  we 
denote  the class o f  all b o u n d e d  operators T in H such that, for every 
or thonormal  basis {xa: a c I} o f  H, the series Y~a~r (Txa, xo) converges and 
is independent  o f  the basis used; the expression tr T : = Y . ~ z  (Txa, x , )  is 
called the trace o f  T. 

A bilinear form is a funct ion t:  D(t )  x D( t )  -~ C [ D ( t )  not  necessarily 
dense or  closed in H ] ,  called the domain  o f  the definition o f  t, such that t 
is linear in both  arguments,  and t(~x, fly) = a~t(x,  y),  x, y c D(  t), a, fl ~ C. 
I f  t(x, y ) =  t(y, x) for all x, y c D( t ) ,  then t is said to be symmetric;  if for 
a symmetr ic  bilinear form t we have t(x, x)>-O for all x c  D( t ) ,  then t is 
said to be positive. Let P c S ~ ( H )  and let p c  D(t) .  Then by t o P we mean 
a symmetric  bilinear form defined by t o P(x, y) = t(Px, Py), x, y ~ H. I f  t o P 
is induced by a trace opera tor  T, that  is, t o P(x, y) = ( Tx, y),  x, y ~ H, then 
we say t o p c T r ( H )  and we put  tr t o P = tr T. 

By Oa~x M~ we mean the joint of  mutual ly  or thogonal  elements M,  c 
5 f (H) ,  a ~/ .  I f  0 ~ x ~ H, then by Px we denote  the one-dimensional  sub- 
space o f  H spanned over x. 

Let n be a cardinal.  We say that a measure m is n-finite if there is a 
set I whose cardinal is n and a set o f  mutual ly  or thogonal  elements 
{Mo: a ~ I } c S E ( H )  such that  OacI Ma = H  with m(Ma)  <oo,  a ~ L  If, in 
particular,  n = No (i.e., the cardinal o f  the set o f  all integers), we say that 
m is it-finite. For  example,  re(M):= dim M, M e  5( (H) ,  is o--finite iff H is 
separable. 

Lugova ja  and Sherstnev (1980) proved that  for any o--finite measure m 
on 5 f (H) ,  m ( H )  = oo, o f  a separable Hilbert space H there exists a unique 
positive symmetr ic  bilinear form t defined on a dense domain  such that 

m ( p ) = { t ~ t o p  i f f t o p ~ T r ( H )  
otherwise (2) 

It is known that not  any symmetric  bilinear form determines via (2) a 
or-finite measure. The necessary and sufficient condi t ion for this is given by 
Lugovaja  (1983). 

2. MAEDA'S THEOREM 

The crucial not ion for our  main goal is a frame function. Denote  
S ( H )  = {x ~ H :  I]x]l = 1}. A function f :  S ( H )  -+ [0, ~ ]  is a frame funct ion if 
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(1) f(3.x) = f ( x )  for all scalars • with [h I = 1; (2) there is a constant W (may 
be +oo), called the weight of f, such that, for any orthonormal b a s i s  
{xa : a c A} of H, }]a ~A f (Xa)  = W. A frame func t ionf  has a finiteness property 
if Y ~ i f ( x ; ) < o o ,  for some orthogonal system of vectors {x~: i c I } c  H, 
impliesflS(G) is a frame function with a finite weight, where G = @ ~  Px,. 
It is clear that any frame function with a finite weight has the finiteness 
property. A frame function f is regular if there is a positive symmetric 
bilinear form t with D(t)={xen:x~O;f(x/llxll)<~)u{o} such that 
f ( x ) =  t(x,x) for any x ~ S ( H ) ~ D ( t ) .  Let n be a cardinal. We say that a 
frame function f is n-finite if there exists an orthonormal basis, {x~: a c A} 
such that A = [~J~ i Aj, where A~ ~ A~ = q5 whenever i ~ j, i, j c I, ~j~A, f(xj) < 
CC for any i c I, and the cardinal of I is n. In particular, if n = No, then we 
say that f is (r-finite. 

Lemma 1. Let f be a frame function with the finiteness property and 
with the infinite weight on S(H) of a three-dimensional Hilbert space. If  
f ( x )+ f ( y )  <o0 and f ( z ) < e c ,  where xZy, then z = e~x+~y for some scalars 
a , / 3 c  C. 

Proof If  we put m(0) = 0, re(P) = ~ m(Px,), where {x~} is an orthonor- 
real basis in P, then m is a measure on Le(H) and the result follows from 
a lemma in Lugovaja and Sherstnev (1980). �9 

Corollary 2. Let 3 -< dim H = n < 0o and let f be a frame function on S(H) 
with the finiteness property and with infinite weight. If  f ( x a ) + ' "  "+ 
f (x ,_ l )  <oc and f ( z ) < o o ,  where x~• if i r  L then z = a l x l + ' " + e ~ , x ,  
for some scalars a l ,  �9 - . ,  a ,  c C. 

Proof Follows from Corollary 4.3 in Dvure6enskij (1985). �9 

The cornerstone of the Gleason theorem is the assertion that any frame 
function with a finite weight on a three-dimensional real Hilbert space is 
regular. The proof is very nontrivial and many attempts at an elementary 
proof  have been made (e.g., Gudder, 1982; Maljugin, 1982; Cooke et aL, 
1985). 

The following two results characterize frame functions with possible 
infinite values. 

Theorem 3. Let 4-< dim H < c~ and let f be a frame function on S(H) 
with the finiteness property and with infinite weight. If  there are three 
orthonormal vectors x, y, z such that f (x )  +f(y) +f(z)  < eo, t h e n f  is regular. 

Proof Using Corollary 2, we see that if we put M = {x c H :  x r 0, 
f(x/I]x[I)<ec}w{O}, then M c ~ ( H )  and dimM->-3. Using the known 
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assertion on finite frame functions on finite-dimensional Hilbert space, we 
see that f l S ( M )  is a regular frame function. [] 

Theorem 4. Let H be a real or complex Hilbert space of dimension 
~2  and let n be any cardinal. Then any n-finite frame function f with the 
finiteness property is regular. 

Proof I f  the weight of  f is finite, then the assertion follows from the 
classical result of Gleason (1957). 

Now let the weight of  f be infinite. Define a map F on H via 

[0  x = 0 
F(x) I f ( x / l l x l l ) l l x l l  2 for x # 0  

Put D ( F ) = { x c H :  F ( x ) < c c } .  We claim to show that D(F) is a dense 
submanifold in H. Let x, y ~ D(F). Due to the n-finiteness of  f, we have 
that there exist three orthonormal vectors x~, x2, x3 and three scalars aa, 
a2, a3 such that f ( x l )  +f(x2) + f ( x 3 )  % 00, Z :-= O~lX 1 "4- a2X2"-~- O/3x3J_x1 , X2, X3, 

and P x C 0 r  where P=@~=~Px,.  Due to Lemma 1, f IS (M) ,  where 
M = Pz v Px v Py, is a finite frame function; hence, F(x + y) < co. The density 
of  D(F) follows from the n-finiteness o f f  

Now we define a positive symmetric bilinear form t. Since any two- 
dimensional subspace Q such that flS(0) is a finite frame function, due 
to the n-finiteness and Theorem 3, may be embedded into some three- 
dimensional subspace N such that f lS(N)  is a finite frame function, f[S(Q) 
is regular. Hence, there is a positive Hermitian operator T O c T r ( H )  such 
that F(x, y) = (Tox , y) for all x, y e Q. 

Now let x, y ~ D(F). Define t(x, y)= ( Tox , y), where Q is some two- 
dimensional subspace of H containing x, y. It is easily verified that t is the 
well-defined symmetric positive bilinear form in question. Indeed, if x, 
y c Qa, Q2, then 

(To, x ,x)=F(x)=(To2x,  x) [] 

Our main goal is the following generalization of Maeda 's  theorem to 
measures with possible infinite values. 

Theorem 5 (S. Maeda).  Let 27(H) be a quantum logic of  a real or 
complex Hilbert space H of dimension 32. Let n be a cardinal and let m 
be an n-finite measure. The following statements are equivalent: 

1. There exists a unique positive bilinear form t with a dense domain 
D(t) such that equation (2) holds. 

2. m has a support. 
3. m is totally additive. 
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Proof Statement 1 0 2 .  Statement 1 implies that D ( t ) =  
{x~H:  m(Px)<oe}u{0} .  Define Do={x~H:  m(Px)=0}u{0} .  We claim 
that Do is a closed submanifold in H. First, let x, y ~ Do. Since Do c D(t), 
x + y ~ D( t ). Check 

t(x + y, x + y)= t(x, x)+ t(x, y)+ t(y,x)+ t(y, y) 

It is known that for any positive symmetric bilinear form t we have I t (x, y)12 -< 
t(x,x) �9 t(y,y) for any x, y~D( t ) .  Hence, x + y e D o .  

Now we show that if  x l , . . . , x ,  cDo, then m ( M , ) = 0 ,  where M , =  
n 

~/i=1 Px,. Without loss of  generality we may assume X l , . . . ,  x,  are linearly 
independent vectors. Applying the Gram-Schmid t  orthogonalization pro- 
cess to X a , . . . ,  x, ,  choose orthonormal vectors Yi = a~x~+. �9 .+alxi, i = 
1 , . . . ,  n. Then 

n 

tr to M,  = Y t(M,y~, M, yi) = 2" i=1 t(yi, y~) = 0  
i = 1  

Due to statement 1, m(M,)= O. 
To show that Do is a closed submanifold,  consider a fundamental  

oo C sequence {x,},=l Do. Let I [x -  x, 1] ~ 0 when n ~ ec. Put M,  = Px, v . . -  v 
Px~ then x ~ M := ~/,~_1 M, and the continuity of m from below implies 
re(M) = l i m ,  m(M,)=0,  so that x ~  Do. 

Now let {x~: i c I} be any orthonormal basis in Do and {yj:jE J} be 
any orthonormal basis in D~-. Check 

t( Doxi, Dox~)+ ~ t(Doy;, Doyj)=0 
i ~ I  j ~ J  

Consequently, t o Doc Tr (H) ,  and re(Do) =0.  I f  we put M =  Do, then M 
is a unique support  of  m. 

Statement 2 ~ 3. Let now {P~: a c A} be an arbitrary system of mutually 
orthogonal elements of  ~ ( H )  with the join P. I f  m ( @ ~ j  P~) = ee for some 
countable subset J of  A, then re(P) = ~ = ~ A  m(P~). Hence, suppose that 
m ( @ ~ j  P~)<ce  for any countable subset J of  A. Denote, for any n >-1, 
A, = { a  c A :  m(P~) >>- 1/n}. Our assumption yields that any A, is a finite 
subset of  A. Put Ao= ~J~= 1 An. Then, for any a 6 A - A o ,  m(P~)=0; con- 
sequently, P~LM, where M is a support  of  m. Therefore, @~A-Ao P~• 
and rn(@o~A_Ao P~) = 0. Since 

m ( P ) = m (  @ P.)+ E m(P.) 
a ~ A - - a  o a ~ A  0 

we have r e ( P ) = E . ~ A  m(P.). 
Statement 3 ~ 1 .  Define on S(H) a function f via f (x )  = m(Px) ,  x ~  

S(H). Then f is an n-finite frame function with the finiteness property. 
Theorem 4 implies that there is a unique positive symmetric bilinear form 
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t with a dense domain D(t)= {xc H: m(Px)<oo}w {0} such that f (x )= 
t(x, x ) =  m(Px). Now we show that equation (2) holds. Let m ( P ) < o e .  I f  
{xi} and {y~} are orthonormal bases in P and p l ,  respectively, then the total 
additivity of  m gives 

m(P) =Z m(P~,) =Z t(xi, x i ) = Z  t(Pxi, Pxi) +Y~ t(Pyj, Pyj) 
i i i j 

which entails t o P c Tr (H) .  
Conversely, if t o P c Tr (H) ,  then 

tr to p = ~  t(xi, xi)=~ m(Px,) = re(P) 
i i 

and the theorem is completely proved. �9 

Remark. An immediate consequence of Theorem 5 is the Gleason 
theorem for o'-finite measures on a separable Hilbert-space quantum logic 
formulated by Lugovaja and Sherstnev (1980) [see (2)], since for a separable 
Hilbert space ~r-additivity and total additivity coincide. Moreover, Theorem 
5 says that in this case any o--finite measure has a support. 

Another application of Theorem 5 is Theorem 6 as follows. First we 
give the following definition. We say, according to Ulam (1930), that the 
cardinal I is nonmeasurable if there is no trivial positive finite measure v 
on the power set a set A, whose cardinal is I, such that ~({a})= 0 for any 
a ~ A. In the opposite case I is called measurable cardinal. It is evident 
that any finite cardinal and No is nonmeasurable.  It is known that if J-< I 
and I is nonmeasurable,  then so is J. I f  the continuum hypothesis holds 
(i.e., N1 = c), then c (cardinal of  reals) is nonmeasurable cardinal. Under  
the assurnption of the generalized continuum hypothesis, the nonmeasura- 
bility of  I implies the nonmeasurabili ty of  2 x. 

We say that the dimension of a Hilbert space H is a nonmeasurable  
cardinal if the cardinal of  an orthonormal basis of  H is nonmeasurable.  

Let m be a cardinal. We say that a map m : 5g(H) -* [0, oe] with m(0) = 0 
is m-additive if m(Ot~ r Pt) = Y.t~r re(P,) whenever the cardinal of  T is m. 

Theorem 6. Let n and m be two cardinals such that n <_ m, No-< m. 
Then, for any n-finite m-additive measure m on a quantum logic 5~(H) of 
a Hilbert space H whose dimension is nonmeasurable cardinal ~2,  each 
of the statements 1-3 of Theorem 5 holds. 

Moreover, if M is a support  of  m, then dim M-<max{No,  n}. 

Proof We shall show that under our assumptions m has a support. 
This is true when m is a finite measure. Indeed, the results of  Eilers and 
Horst  (1975) and Drisch (1979) show that there is a unique positive Her- 
mitian operator T ~ T r ( H )  such that re(M) = t r (TM),  M ~ 5s Hence, 
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according to Schatten (1970), T=~,a~ A h a f a Q f a  , where A is a countable 
index set, fxf:x~--~(x,f)f, for any xeH,  h a > 0  for any aeA.  An easy 
calculation shows that M := (~)a~A Pro is a support of m of  dimension ---No. 

Now let re(H) = oo. The n-finiteness of m implies that there is a system 
of subspaces {H~: i e l }  such that Oi~i  Hi =H, re(Hi) <~176 for any ieI ,  
where the index set I has the cardinal n. Without loss of generality we may 
assume that dim He -> 3. The first part of  the present proof  entails that, for 
any ieI,  Hi=Mi@N~, where M~ is a support of a finite measure me: = 
m[~(/-/~), i e / ,  with dim M~ -< No. 

Let us put H o ~ = O ~ I  M~, Noo=@i~1Ni; then dim Hoo= n. Now we 
show that an n-finite n-additive measure moo: = rnlS~(Hoo) has a support of 
dimension -< n. In fact, denote Do = {x e H~o: mo~(Px) = 0} u {0}. Theorem 4 
entails the existence of  a symmetric positive bilinear form t with a dense 
domain in H such that m(Px)= t(x, x) whenever m(Px)< co. Therefore, as 
in the proof  of the implication 1 0 2  from Theorem 5, x, yeDo implies 
x + y e Do. Moreover, if xl, �9 �9 �9 x, are linearly independent vectors belong- 
ing to Do, then m(M~)=O, where M,=V~IPx~. Indeed, choosing 

i i orthonormal vectors y ~ , . . . , y ,  of form Yi= a~x~ +" " +  aixi, i= 1, . . . ,  n, 
then 

n n 
m(M,)=Z,=l m(Py,)=~i=1 t(yi, Y~) =0 

Now it is clear that Do is a closed submanifold in H~,  and the n-additivity 
of  rn~o gives rno~(Do) = 0. Consequently, M = H~ ^ D~- is a support of  moo, 
and dim M-< max{No, n}. 

Now we show that M is also a support of a measure m on ~ ( H ) .  Put 
N = { x e H :  m(P~)=0}u{0}.  Then as above N e ~ ( H ) .  It is evident that 
N /=  H for any i e / ,  and Do e N. Then M • = Do0) N~ c N. We claim N = 
M ' .  If  not, then x e N ^ M. Simultaneously, rn(Px) = 0 and m(P~) > 0, which 
gives a contradiction. 

Finally, to prove the assertion of  the theorem, it is necessary to apply 
Theorem 5. �9 

Proposition 7. Let m be an n-finite measure on a quantum logic ~ ( H )  
of a Hilbert space of dimension ~ 2. If  M is a support of m, then dim M -< 
max{No, n}. 

Proof Theorem 5 implies that m is totally additive. Repeating the proof 
of  Theorem 6, we obtain the assertion of  the proposition. �9 

References  

Cooke, R., Keane, M., and Moran, W. (1985). An elementary proof of Gleason's theorem, 
Mathematical Proceedings of the Cambridge Philosophical Society, 98, 117-128. 



1124 Dvure(~enskij 

Drisch, T. (1979). Generalization of Gleason's theorem, International Journal of Theoretical 
Physics, 18, 239-243. 

Dvure~enskij, A. (1985). Gleason theorem for signed measures with infinite values, 
Mathematica Slovaca, 35, 319-325. 

Eilers, M., and Horst, E. (1975). The theorem of Gleason for nonseparable Hilbert space, 
International Journal of Theoretical Physics, 13, 419-424. 

Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert space, Journal of 
Mathematics and Mechanics, 6, 885-893. 

Gudder, S. P. (1972). Plane frame functions and pure states in Hilbert space International 
Journal of Theoretical Physics, 6, 369-375. 

Kalmbach, G. (1983). Orthomodular Lattices, Academic Press, London. 
Lugovaja, G. D. (1983). Bilinear forms determining measures on projectors, Izvestija Vuzov- 

Matematika, 1983 (2), 88-88 (in Russian). 
Lugovaja, G. D., and Sherstnev, A. N. (1980). On the Gleason theorem for unbounded 

measures, Izvestija Vuzov-Matematika, 1980 (12), 30-32 (in Russian). 
Maeda, S. (1980). Lattice Theoryand Quantum Logic, Mahishoten, Tokyo (in Japanese). 
Maljugin, S. A. (1982). On Gleason's theorem, Izvestija Vuzov-Matematika, 1980 (8), 50-51 

(in Russian). 
Schatten, R. (1970). Norm Ideals of Completely Continuous Operators, 2nd ed., Springer-Verlag, 

Berlin. 
Ulam, S. (1930). Zur Masstheorie in der allgemeinen Mengelehre, Fundamenta Mathematica, 

16, 140-150. 


